Science for Education Today, 2021, vol. 11, no. 3, pp. 161–176
UDC: 
612 + 577

Model characteristics of competition performance in terms of athletes’ functional fitness

Balberova O. V. 1 (Chelyabinsk, Russian Federation), Sidorkina E. G. 1 (Chelyabinsk, Russian Federation), Koshkina K. S. 1 (Chelyabinsk, Russian Federation), Plachy J. K. 2 (Hungary, Republic of Hungary), Bykov E. V. 1 (Chelyabinsk, Russian Federation)
1 Ural State University of Physical Culture
2 University of Miskolc, Miskolc, Borsod-Abaúj-Zemplén
Abstract: 

Introduction. Nowadays, the theory of sports does not contain clear criteria for assessing sports fitness, which would reflect the model characteristics of competition performance. The article presents the research results on the functional state of athletes with different training process specifics as model characteristics of competition performance. The aim of the research is to identify and describe the model characteristics of competition performance as the main criterion for evaluating sports training in the theory of sports.

Materials and Methods. Energy component of athletes’ functional fitness was studied in 80 qualified athletes (Candidates for Master of Sports, Masters of Sports, International Masters of Sports), specializing in running short, medium and long distances during the period of training for competitions. The study of the energy component was conducted using the inventory developed by B. F. Vashlyaev et al. (‘A method for evaluating physical performance based on minute volume of breathing dynamics ratio to increasing load power’). This method allows to identify which source of energy is used by the athlete while taking a cycle ergometer testing.

Results. The authors identified the model characteristics of functional fitness in athletes with different training specifics, based on the energy component. The study provides physiological grounding from the point of view of appropriate interaction of energy supply systems. The key regulatory mechanisms associated with the metabolic reactions activation of adenosine triphosphate molecules production are described.

Conclusions. Model characteristics of athletes' competition performance, obtained in this research, can be used by coaches in order to manage sports training effectively. Moreover, the identified model characteristics can be used as the main criteria for evaluating sports training in sports theory.

Keywords: 

Model characteristics; Competition performance; Functional fitness; Theory of sports; Aerobic capacity; Aerobic power; Anaerobic capacity; Anaerobic power.

URL WoS/RSCI: https://www.webofscience.com/wos/rsci/full-record/RSCI:46233040

For citation:
Balberova O. V., Sidorkina E. G., Koshkina K. S., Plachy J. K., Bykov E. V. Model characteristics of competition performance in terms of athletes’ functional fitness. Science for Education Today, 2021, vol. 11, no. 3, pp. 161–176. DOI: http://dx.doi.org/10.15293/2658-6762.2103.09
References: 
  1. Aranson M. V., Shustin B. N. Topics of modern researches on Olympic cyclic sports. Ucheny`e zapiski universiteta imeni P. F. Lesgafta, 2019, no. 4, pp. 18–25. URL: https://elibrary.ru/item.asp?id=37785377
  2. Balberova O. V., Bykov E. V., Chipy`shev A. V., Sidorkina E. G. Parameters of functional fitness associated with high physical performance in athletes cyclical sports. Sovremenny`e voprosy` biomediciny, 2020, vol. 4 (3), pp. 5–14. URL: https://elibrary.ru/item.asp?id=44074066
  3. Bykov E. V., Balberova O. V., Kolomiecz O. I., Chipy`shev A. V. Correlation of functional testing data and results of competitive activities of athletes with different character of physical loading. Ucheny`e zapiski universiteta im. P.F. Lesgafta, 2018, no. 8, pp. 32–38. URL: https://elibrary.ru/item.asp?id=35630041
  4. Kryazhev V. D., Kryazheva S. V., Alenurov E. A., Bokova L. V. Competitive and training areas in cyclical locomotion at top-qualified athletes. Ucheny`e zapiski universiteta im. P.F. Lesgafta, 2020, no. 10, pp. 205–213. DOI: https://doi.org/10.34835/issn.2308-1961.2020.10.p205-213 URL: https://www.elibrary.ru/item.asp?id=44237355
  5. Baker J. S., McCormick M. C., Robergs R. A. Interaction among skeletal muscle metabolic energy systems during intense exercise. Journal of Nutrition and Metabolism, vol. 2010, pp. 905612. DOI: http://doi.org/10.1155/2010/905612
  6. Hargreaves M., Spriet L. L. Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2020, vol. 2 (9), pp. 817–828. DOI: https://doi.org/10.1038/s42255-020-0251-4
  7. Hashimoto T., Hussien R., Oommen S., Gohil K., Brooks G. A. Lactate sensitive transcription factor network in L6 cells: Activation of MCT1 and mitochondrial biogenesis. Federation of American Societies for Experimental Biology Journal, 2007, vol. 21 (10), pp. 2602–2612. DOI: https://doi.org/10.1096/fj.07-8174com  
  8. Hawley J. A., Leckey J. J. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Medicine, 2015, vol. 45 (S1), pp. 5–12. DOI: https://doi.org/10.1007/s40279-015-0400-1  
  9. Horowitz J. F., Klein S. Lipid metabolism during endurance exercise. American Journal of Clinical Nutrition, 2000, vol. 72 (2), pp. 558S–563S. DOI: https://doi.org/10.1093/ajcn/72.2.558S

10. Maunder E., Plews D. J., Kilding A. E. Contextualising maximal fat oxidation during exercise: determinants and normative values. Frontiers in Physiology, 2018, vol. 23 (9), pp. 599. DOI: https://doi.org/10.3389/fphys.2018.00599

11. Medbø J. I., Jebens E., Noddeland H., Hanem S., Toska K. Lactate elimination and glycogen resynthesis after intense bicycling. Scandinavian Journal of Clinical and Laboratory Investigation, 2006, vol. 66 (3), pp. 211–226. DOI: https://doi.org/10.1080/00365510600570599

12. Muscella A., Stefàno E., Lunetti P., Capobianco L., Marsigliante S. The regulation of fat metabolism during aerobic exercise. Biomolecules, 2020, vol. 10 (12), pp. 1699. DOI: https://doi.org/10.3390/biom10121699

13. Özgünen K. T., Özdemir Ç., Korkmaz-Eryılmaz S., Kılcı A., Günaştı Ö., Kurdak S. S. A Comparison of the maximal fat oxidation rates of three different time periods in the fatmax stage. Journal of Sports Science and Medicine, 2019, vol. 18 (1), pp. 44–51. DOI: https://pubmed.ncbi.nlm.nih.gov/30787650/

14. Ørtenblad N., Westerblad H., Nielsen J. Muscle glycogen stores and fatigue. Journal of Physiology, 2013, vol. 591 (18), pp. 4405–4413. DOI: https://doi.org/10.1113/jphysiol.2013.251629  

15. Peric R., Meucci M., Bourdon P. C., Nikolovski Z. Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests? Journal of Sports Medicine and Physical Fitness, 2018, vol. 58 (10), pp. 1412–1417. DOI: https://doi.org/10.23736/S0022-4707.17.07555-7  

16. Scheiman J., Luber J. M., Chavkin T. A., MacDonald T., Tung A., Pham L. D., Wibowo M. C., Wurth R. C., Punthambaker S., Tierney B. T., Yang Z., Hattab M. W., Avila-Pacheco J., Clish C. B., Lessard S., Church G. M., Kostic A. D. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine, 2019, vol. 25 (7), pp. 1104–1109. DOI: https://doi.org/10.1038/s41591-019-0485-4  

17. Takahashi H., Alves C. R. R., Stanford K. I., Middelbeek R. J. W., Nigro P., Ryan R. E., Xue R., Sakaguchi M., Lynes M. D., So K., Mul J. D., Lee M. Y., Balan E., Pan H., Dreyfuss J. M., Hirshman M. F., Azhar M., Hannukainen J. C., Nuutila P., Kalliokoski K. K., Nielsen S., Pedersen B. K., Kahn C. R., Tseng Y. H., Goodyear L. J. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nature Metabolism, 2019, vol. 1 (2), pp. 291–303. DOI: https://doi.org/10.1038/s42255-018-0030-7  

18. van Loon L. J., Greenhaff P. L., Constantin-Teodosiu D., Saris W. H., Wagenmakers A. J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. Journal of Physiology, 2001, vol. 536 (1), pp. 295–304. DOI: https://doi.org/10.1111/j.1469-7793.2001.00295.x

19. van Loon L. J., Thomason-Hughes M., Constantin-Teodosiu D., Koopman R., Greenhaff P. L., Hardie D. G., Keizer H. A., Saris W. H., Wagenmakers A. J. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. American Journal of Physiology – Endocrinology and Metabolism, 2005, vol. 289 (3), pp. 482–493. DOI: https://doi.org/10.1152/ajpendo.00092.2005  

20. Volkov N. I., Popov O. I., Gabrys' T., Shmatyan-Gabrys U. Physiological criteria in defining the standards for training and competition loads in elite sports. Human Physiology, 2005, vol. 31 (5), pp. 606–614. DOI: https://doi.org/10.1007/s10747-005-0102-4

21. Wasserman D. H. Four grams of glucose. American Journal of physiology. Endocrinology and metabolism, 2009, vol. 296 (1), pp. 11–21. DOI: https://doi.org/10.1152/ajpendo.90563.2008  

22. Watt M., Heigenhauser G., Dyck D., Spriet L. Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. The Journal of Physiology, 2002, vol. 541 (3), pp. 969–978. DOI: https://doi.org/10.1113/jphysiol.2002.018820

23. Zinoubi B., Vandewalle H., Driss T. Modeling of running performances in humans: Comparison of power laws and critical speed. Journal of Strength and Conditioning Research, 2017, vol. 31 (7), pp. 1859–1867. DOI: https://doi.org/10.1519/JSC.0000000000001542  

Date of the publication 30.06.2021