Science for Education Today, 2019, vol. 9, no. 5, pp. 110–124
UDC: 
514.8: 008

The topology of human reflection: Comparison with finite automata

Trofimov V. M. 1 (Krasnodar, Russian Federation)
1 Kuban State Technological University
Abstract: 

Introduction. The questions of how a pure thought sets the material nature of muscles in motion, and how any child handles them more efficiently than the most perfect robot, remain the simplest in form and the most complex in content. The aim of this research is to identify the topology of reflection, to reveal how a cognizing subject perceives the object and vice versa. This mechanism is considered to be partially computable, but, in general, non-computable.
Materials and Methods. The algorithmic side of the thinking mechanism is represented on the basis of the general principle of a Turing machine. But this is only a local property of the model. The sequence of topologically special objects – the Möbius strips – organizes directed reflection as a whole, and this process is no longer computable, as it is inherent in the Turing machine.
Results. Relatively independent closed ‘perception-reflection’ cycles represent real experiences of perception in the form of undirected topological structures – Möbius strips. On the basis of these experiences, examples of purposeful reflection and in some geometric sense, the opposite examples of intuitive mental acts can be built. Real reflection involves both types of experience orientation-tapes. An attempt is made to answer the question of the connection of non-material structure with material ‘experiences’ in the process of reflection.
Conclusions. In the proposed model, the manifestation of human consciousness is most closely related to the ‘map’ of possible orientations which set the direction of the cascade of reflections. Moreover, the operational manifestations of possible human conscious understanding concern the recording process on the ‘back side’ of a conditional tape loop, and transitions to the other loop in a single cascade.

Keywords: 

Human reflection; Experiences-structures; Möbius strip; Orientation of the experiences-stripes; Computability of process; Finite automaton; Non-computability of reflection.

URL WoS/RSCI:  https://www.webofscience.com/wos/rsci/full-record/RSCI:41271743

Prominence Percentile SciVal: 77.413 Hypercomputation | Computability | Turing

https://www.scopus.com/record/display.uri?eid=2-s2.0-85074627432&origin=...

On a concept of topology of human reflection in comparison with finite automata

For citation:
Trofimov V. M. The topology of human reflection: Comparison with finite automata. Science for Education Today, 2019, vol. 9, no. 5, pp. 110–124. DOI: http://dx.doi.org/10.15293/2658-6762.1905.07
References: 
  1. Adamatzky А., Akl S., Burgind M., Caludee C. S., Costa J. F., Dehshibi M. M., Gunji Y.-P., Konkoli Z., MacLennan B.,   Marchal B., Margenstern M., Martínez G., Mayne R., Morita K., Schumann A., Sergeyev Y. D., Sirakoulis G. Ch., Stepney S., Svozil K., Zenil H. East-West paths to unconventional computing. Progress in Biophysics and Molecular Biology, 2017, vol. 131, pp.  469–493. DOI: https://doi.org/10.1016/j.pbiomolbio.2017.08.004
  2. Beck F., Eccles J. С. Quantum aspects of brain activity and the role of consciousness. Proceedings of the National Academy of Sciences, 1992, vol. 89, issue 23, pp. 11357–11361. DOI: https://doi.org/10.1073/pnas.89.23.11357
  3. Calude C. S. Quantum randomness: From practice to theory and back. In: Cooper S., Soskova M. (Eds.) The Incomputable. Theory and Applications of Computability (In cooperation with the association Computability in Europe). Cham, Springer Publ., 2017, pp. 169–181. DOI: https://doi.org/10.1007/978-3-319-43669-2_11
  4. Calude C. S., Longo G. Classical, quantum and biological randomness as relative unpredictability. Natural Computing, 2016, vol. 15, issue 2, pp. 263–278. DOI: https://doi.org/10.1007/s11047-015-9533-2
  5. Dale M., Miller J. F., Stepney S. Reservoir computing as a model for in-materio computing. In: Adamatzky A. (Ed.) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol. 22, Cham, Springer Publ., 2017, pp. 533–571. DOI: https://doi.org/10.1007/978-3-319-33924-5_22
  6. Deutsch D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A (Lond.), 1985, vol. 400, issue 1818, pp. 97–117. DOI: https://doi.org/10.1098/rspa.1985.0070 
  7. Deutsch D. Quantum mechanics near closed timelike lines. Physical Review D, 1991, vol. 44, issue  10–15, pp. 3197–3217. DOI: https://doi.org/10.1103/PhysRevD.44.3197  
  8. Eccles J. C. How the self controls its brain. Berlin, Springer Publ., 1994, 198 p. DOI: https://doi.org/10.1007/978-3-642-49224-2
  9. Hameroff  S. The “conscious pilot”– dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics, 2010, vol. 36, issue 1, pp. 71–93. DOI: https://doi.org/10.1007/s10867-009-9148-x
  10. Hameroff S. R., Watt R. С. Information in processing in microtubules. Journal of Theoretical Biology, 1982, vol. 98, issue 4, pp. 549–561. DOI: https://doi.org/10.1016/0022-5193(82)90137-0
  11. Hameroff S., Penrose R. Consciousness in the universe: A review of the ‘Orch OR’ theory. Physics of Life Reviews, 2014, vol. 11, issue 1, pp. 39–78. DOI: https://doi.org/10.1016/j.plrev.2013.08.002
  12. Horsman D., Kendon V., Stepney S. The natural science of computing. Communications of the ACM, 2017, vol. 60, issue 8, pp. 31–34. DOI: https://doi.org/10.1145/3107924
  13. Gauvrit N., Zenil H., Soler-Toscano F., Delahaye J.-P., Brugger P. Human behavioral complexity peaks at age 25. PLOS Computational Biology, 2017, vol. 13, issue 4, pp. e1005408. DOI: https://doi.org/10.1371/journal.pcbi.1005408    
  14. Gauvrit N., Soler-Toscano F., Zenil H. Natural scene statistics mediate the perception of image complexity. Visual Cognition, 2014, vol. 22, issue 8, pp. 1084–1091. DOI: https://doi.org/10.1080/13506285.2014.950365
  15. Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 1931, vol. 38, issue 1, pp. 173–198. DOI: https://doi.org/10.1007/BF01700692
  16. Grundler W., Keilmann F. Sharp resonances in yeast growth proved nonthermal sensitivity to microwaves. Physical Review Letters, 1983, vol. 51, issue 13–26, pp. 1214–1216. DOI: https://doi.org/10.1103/PhysRevLett.51.1214  
  17. Marchal B.  The computationalist reformulation of the mind-body problem. Progress in Biophysics and Molecular Biology, 2013, vol. 113, issue 1, pp. 127–140. DOI: https://doi.org/10.1016/j.pbiomolbio.2013.03.014
  18. Penrose R. An emperor still without mind. Behavioral and Brain Sciences, 1993, vol. 16, issue 3, pp. 616–622. DOI: https://doi.org/10.1017/S0140525X00031964
  19. Raptis T. E. “Viral” Turing Machines, computation from noise and combinatorial hierarchies. Chaos, Solitons and Fractals, 2017, vol. 104, pp. 734–740. DOI: https://doi.org/10.1016/j.chaos.2017.09.033
  20. Schumann A., Woleński J. Two squares of oppositions and their applications in pairwise comparisons analysis. Fundamenta Informaticae, 2016, vol. 144, issue 3–4, pp. 241–254. DOI: https://doi.org/10.3233/FI-2016-1332
  21. Stepney S., Abramsky S., Bechmann M., Gorecki J., Kendon V., Naughton T. J., Perez-Jimenez M. J., Romero-Campero F. J., Sebald A. Heterotic Computing Examples with optics, bacteria, and chemicals. In: Durand-Lose J., Jonoska N. (Eds.) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol. 7445. Berlin, Heidelberg, Springer Publ., 2012, pp. 198–209. https://doi.org/10.1007/978-3-642-32894-7_19
  22. Stepney S. Local and global models of physics and computation. International Journal of General Systems, 2014, vol. 43, issue 7, pp. 673–681.  DOI: https://doi.org/10.1080/03081079.2014.920995  
  23. Zenil H. What Is Nature-Like Computation? A behavioural approach and a notion of programmability. Philosophy and Technology, 2014, vol. 27, issue 3, pp. 399–421. DOI: https://doi.org/10.1007/s13347-012-0095-2
Date of the publication 31.10.2019