Peculiarities of frontal cortex and brain neurometabolism activation in 7-10-year-old children with ADHD
Introduction. The article presents the results of investigating the activation and cerebral energy metabolism in children with attention deficit disorder with hyperactivity. The purpose of this article is to study peculiarities of activation of the frontal cortex and neurometabolism of the brain in children with ADHD.
Materials and Methods. 104 schoolchildren from Krasnoyarsk were examined, including 64 children with ADHD and 40 children with normal development. The authors used an omega tester in order to study the activation levels of the brain systems. The energy state of the brain was studied by means of computer-hardware NEC-5.
Results The article presents a brief review of modern studies of the formation mechanisms of attention deficit disorder with hyperactivity. The main results of the research indicate the specific features of the activation and cerebral energy metabolism in children with ADHD. Children with cerebral dysfunction are characterized by increased level and asymmetrical activation of the frontal cortex, which may indicate underdevelopment of cortical-subcortical and limbic-reticular mechanisms of the brain. The aggregate indicators of the level of permanent potential of the brain in children with ADHD are significantly higher than those of children with normal development. The greatest increase in SCP was detected in the frontal part of the brain which causes the violation of the functional systems providing arbitrary regulation. Children with ADHD demonstrated a marked violation of the principle of spherical distribution of energy consumption: the shift to SCP in the frontal and right temporal lobe of the brain. There was a significant correlation between neurometabolism of the cerebral cortex and the activation level, due to the violation of the functional activity of nonspecific reticulo-limbic-cortical neural connections.
Conclusions. The authors conclude that the state of the activating mechanisms and neurometabolic reactions are important factors affecting the formation mechanisms of ADHD.
Attention deficit; Brain; Frontal cortex; Activation levels of omega-potential; Neurometabolism; Level of constant potentials
https://www.scopus.com/record/display.uri?src=s&origin=cto&ctoId=CTODS_1...
- Biederman J., Faraone S. V. Attantion-Deficit Hyperactivity Disorder. Lancet, 2005, vol. 366 (9481), pp. 237–248. DOI: https://doi.org/10.1016/S0140-6736(05)66915-2
- Casula E., Basso D., Arcara G., Marino G., Toffolo G. M., Rothwell J. C., Bisiacchi P. S. Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials. Neurolmage, 2014, vol. 98, pp. 225–232. DOI: http://dx.doi.org/10.1016/j.neuroimage.2014.04.065
- Colaner N., Keim S., Adesman A. Physician practices to prevent ADHD stimulant diversion and misuse. Journal of substance Abuse Treatment, 2017, vol. 74, pp. 26–34. DOI: http://dx.doi.org/10.1016/j.jsat.2016.12.003.
- Craig F., Lamanna A., Margani F., Matera E., Simone M., Margari L. Overlap between autism spectrum disorders and attention deficit hyperactivity disorder: searching for distinctive / common clinical features. Autism research, 2015, vol. 8, no. 3, pp. 328–337. DOI: http://dx.doi.org/10.1002/aur.1449.
- Doren J., Heihnrich H., Bezold M., Reuter N., Kratz O., Horndasch S., Berking M., Ros T., Gevensleben H., Moll G. H., Studer P. Teta/beta neurofeedback in children with ADHD: Feasibility of a short-tern setting and plasticity effects. International Journal of Psychophysiology, 2017, vol. 112, pp. 80–88. DOI: http://dx.doi.org/10.1016/j.ijpsycho.2016.11.004.
- Greenberg L. M., Waldman I. D. Developmental normative data on the test of variables of attention (T.O.V.A). J Child Psychol Psychiatry, 1993, vol. 34, no. 6, pp. 1019–1030. Google Scholar: https://scholar.google.com/scholar?q=Greenberg%2C%20L.M.%20and%20Waldman%2C%20I.D.%2C%20Developmental%20Normative%20Data%20on%20the%20Test%20of%20Variables%20of%20Attention%20%28T.O.V.A.%29%2C%20J.%20Child%20Psychol.%20Psychiat.%2C%201993%2C%20vol.%2034%2C%20no.%206%2C%20p.%201019
- Husarova V., Bittsansky M., Ondrejka I., Dobrota D. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/ hyperactivity disorder: A 1H magnetic resonance spectroscopy. Psychiatry Research: Neuroimaging, 2014, vol. 222, no. 1–2, pp. 75–83. DOI: http://dx.doi.org/10.1016/j.pscychresns.2014.03.003 .
- Jo H.-G., Schmidt S., Inacker E., Markowiak M., Hinterberger Th. Mediation and attention: A controlled on long-term mediators in behavioral performance and event-related potentials of attention control. International Journal of Psychophysiology, 2016, vol. 99, pp. 33–39. DOI: http://dx.doi.org/10.1016/j.ijpsycho.2015.11.016.
- Klein M., Onhink M., Donkelaar M., Wolfers Th., Harich B., Shi Ya., Dammers J., Arias-Vásquez A., Hoogman M., Franke B. Brain imaging genetics in ADHD and beyond-mapping pathways from gene to disorder at different levels of complexity. Neuroscience & Biobehavioral Reviews, 2017, vol. 80, pp. 115–155. DOI: http://dx.doi.org/10.1016/j.neubiorev.2017.01.013.
- Kompatsiari K., Candrian G., Mueller A. Test-retest reabiality of ERP components: A short-tern replication of a visual Go/NoGo task in ADHD subjects. Neuroscience Letters, 2016, vol. 617, pp. 166–172. DOI: http://dx.doi.org/10.1016/j.neulet.2016.02.012.
- Liu L., Cheng J., Li H., Yang L., Qian Q., Wang Y. The possible involvement of genetic variants of NET1 in the etiology of attention deficit/hyperactivity disorder comorbit with oppositional defiant disorder. Journal of Child Psychology and Psychiatry, 2015, vol. 56, no. 1, pp. 58–66. DOI: http://dx.doi.org/10.1111/jcpp.12278
- Lopez-Martin S., Albert J., Fernández-Jaénc A., Carretie L. Emotional distraction in boys with ADHD: Neural and behavioral correlates. Brain and Cognition, 2013, vol. 83 (1), pp. 10–20. DOI: http://dx.doi.org/10.1016/j.bandc.2013.06.004
- Ma I., Duijvenvoorde A., Scheres A. The interaction between reinforcement and inhibitory control in ADHD: A review and research guidelines. Clinical Psychology Review, 2016, vol. 44, pp. 94–111. DOI: http://dx.doi.org/10.1016/j.cpr.2016.01.001.
- Nigg J. T., Blaskey L. G., Huang-Pollock C. L., Rappley M. D. Neuropsychological Executive Functions and DSM-IV ADHD Subtypes. J. Am. Acad. Child Adolesc. Psychiatry, 2002, vol. 41, no. 1, pp. 59–66. DOI: https://dx.doi.org/10.1097/00004583-200201000-00012
- Polanczyk G., de Lima M. S., Horta B. L., Biederman J., Rohde L. A. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. Am. J. Psychiatry, 2007, vol. 164, no. 6, pp. 942–948. DOI: https://dx.doi.org/10.1176/ajp.2007.164.6.942 .
- Sánchez-Mora C., Richarte V., Garcia-Martínez I., Pagerols M., Corrales M., Bosch R., Vidal R., Viladevall L., Casas M., Cormand B., Ramos-Quiroga J. A., Ribasés M. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. American journal of medical genetics, 2015, vol. 168, no. 6, pp. 480–491. DOI: http://dx.doi.org/10.1002/ajmg.b.32340 .
- Scerif G., Baker K. Annual research review: Rare genotypes and childhood psychopathology – uncovering diverse developmental mechanisms of ADHD risk. J Child Psychol Psychiatry, 2015, vol. 56 (3), pp. 251–273. DOI: http://dx.doi.org/10.1111/jcpp.12374 .
- Seymour K., Mostofsky S., Rosch K. S. Cognitive load differentially impacts response control in girls and boys with ADHD. Journal of Abnormal Child Psychology, 2016, vol. 44, no. 1, pp. 141–154. DOI: http://dx.doi.org/10.1007/s10802-015-9976-z.
- Shith T., Schmidt-Kasther R., McGeary J., Kaczonowski J., Knopik V. Pre- and perinatal ischemia-hypoxia, the ischemia-hypoxia response pathway, and ADHD risk. Behavior Genetics, 2016, vol. 46, no. 3, pp. 467–477. DOI: http://dx.doi.org/10.1007/s10519-016-9784-4.
- Silvetti M., Wiersema J., Sosuga-Barne E., Verguts T. Deficient reinforcement learning in medial frontal cortex as a modern of dopamine-related motivational deficits in ADHD. Neural Networks, 2013, vol. 46, pp. 199–209. DOI: http://dx.doi.org/10.1016/j.neunet.2013.05.008
- Snyder S. M., Rugino T. A., Horning M., Stein M. A. Integration of an EEG biomarker with a clinician’s ADHD evaluation. Brain and Behavior, 2015, vol. 5, no. 4, pp. e00330. DOI: http://dx.doi.org/10.1002/brb3.330.
- Swift K. D., Sayal K., Hollis C. ADHD and transitions to adult mental health services: a scoping review. Child: Care, Health and Development, 2014, vol. 40, no. 6, pp. 775–786. DOI: http://dx.doi.org/10.1111/cch.12107.
- Tafazoli S., O’Neill J., Bejjani A., Ly R., Salamon N., McCracken J. T., Alger J. R., Levitt J. G. 1H MRSI of middle frontal gyrus in pediatric ADHD. Journal of Psychiatric Research, 2013, vol. 47, no. 4, pp. 505–512. DOI: http://dx.doi.org/10.1016/j.jpsychires.2012.11.011
- Tye C., Battaglia M., Bertoletti E., Ashwood K. L., Azadi B., Asherson P., Bolton P., McLoughlin G. Altered neurophysiological responses to emotional faces discriminate children with ASD, ADHD and ASD + ADHD. Biological Psychology, 2014, vol. 103, pp. 125–134. DOI: https://dx.doi.org/10.1016/j.biopsycho.2014.08.013
- Vilgis V., Sun L., Chen J., Silk T., Vance A. Global and local grey matter reductions in boys with ADHD combined and ADHD inattentive type. Psychiatry Research: Neuroimaging, 2016, vol. 254, pp. 119–126. DOI: http://dx.doi.org/10.1016/ j.pscychresns.2016.06.008.
- Willcutt E. G., Chhabildas N., Kinnear M. C. DeFries J. C., Olson R. K., Leopold D. R., Keenan J. M., Pennington B. F. The Internal and external validity of sluggish cognitive tempo and its relation with DSM-IV ADHD. Journal of Abnormal Child Psychology, 2014, vol. 42, no. 1, pp. 21–35. DOI: http://dx.doi.org/10.1007/s10802-013-9800-6.
- Ye C., Hu Z., Wu E., Yang X., Buford U. J., Guo Z., Saveanu R. V. Two SNAP-25 genetic variants in the binding site of multiple microRNAs and susceptibility of ADHD: A meta-analysis. Journal of Psychiatric Research, 2016, vol. 81, pp. 56–62. DOI: http://dx.doi.org/10.1016/j.jpsychires.2016.06.007.
- Ziegnler S., Pedersen M. L., Mowinckel A. M., Brele G. Modeling ADHD: A review of ADHD theories through their predictions for decision-making and reinforcement learning. Neuroscience & Biobehavioral Reviews, 2016, vol. 71, pp. 633–656. DOI: http://dx.doi.org/10.1016/ j.neubiorev.2016. 09.002.
- Zavadenko N. N. Attention Deficit Hyperactivity Disorder: New Developments in Diagnosis and Treatment. Journal of Medical and Biological Research, 2014, no. 1, pp. 31–39. (In Russian) URL: https://elibrary.ru/item.asp?id=21455739
- Ilyukhina V. A. Ultraslow information control systems in the integration of life activity processes in the brain and body. Human Physiology, 2013, vol. 39, no. 3, p. 114. (In Russian) DOI: http://dx.doi.org/10.7868/S0131164613030107
- Ilyukhina V. A. Psychophysiology of functional states and cognitive performance of healthy and sick person. Monograph. St. Petersburg, Institute of the Human Brain Publ., 2010, 367 p. (In Russian) https://elibrary.ru/item.asp?id=19500871
- Nekhoroshkova A. N., Gribanov A. V. Distribution of dc potential level in primary school children with high level of anxiety. Journal of Medical and Biological Research, 2015, no. 3, pp. 30–36. (In Russian) URL: https://elibrary.ru/item.asp?id=24277748
- Pankov M. N., Podoplekin A. N., Sidorova E. Yu., Antonova I. V. Distribution of the level of constant brain potential in children aged 7–11 years with high level of aggression. Journal of Medical and Biological Research, 2015, no. 1, pp. 49–57. (In Russian) URL: https://elibrary.ru/item.asp?id=23266373
- Podoplekin A. N. Energy state of the brain in substance-using adolescents with ADHD. Journal of Medical and Biological Research, 2014, no. 1, pp. 89–92. (In Russian) URL: https://elibrary.ru/item.asp?id=21455748
- Fokin V. F., Ponomareva N. V. Energy physiology of the brain. Monograph. Moscow, Antidor Publ., 2003, 288 p. (In Russian) https://elibrary.ru/item.asp?id=26409935