Novosibirsk State Pedagogical University Bulletin, 2017, vol. 7, no. 1, pp. 173–190
UDC: 
612.1+57.026

Comparative analysis of indicators of the functional state in contemporary Moscow first-graders and their peers in 2002–2003

Pankova N. B. 1 (Moscow, Russian Federation), Karganov M. Y. 1 (Moscow, Russian Federation)
1 Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
Abstract: 

Introduction. Medical and biological monitoring studies indicate that in the last decade, there are significant changes in the functional state of children`s and adolescents` organisms. The aim of this work was a comparative study of the functional parameters of children came to study in the primary school (end of September) in 2002–2003 and 2014 in Moscow.
Materials and Methods. We used anthropometric data (body height and weight), and the parameters of the cardiovascular system, obtained with spiroarteriocardiorythmographic method: spectral indices of heart rate variability, indicators of cardiac performance, the value of spontaneous arterial baroreflex sensitivity.
Results. It is shown that for the evaluated period entry age to school slightly decreased; the data on the length of the body did not change, but indicators of body weight and body mass index increased. At the same time the quantities ща cardiac stroke volume and minute volume of blood circulation at a constant heart rate decreased. Assessment of heart rate variability parameters showed that in 2014 the total spectrum power remained at the 2002-2003-s level, but there was a redistribution of separate power ranges. The research marked an increase in the absolute power of LF and VLF ranges, changes in HF band power didn`t reach the level of statistical significance. The observed increase of LF power range was in relative terms, with a corresponding increase in LF/HF index. The performed both direct and indirect estimate of the sensitivity of spontaneous arterial baroreflex did not reveal the dynamics of this indicator.
Conclusions. It is proposed that the increase in absolute and relative power of the LF range at constant power HF range and value of spontaneous arterial baroreflex sensitivity may be due to changes in the functional state of vasomotor regulation – increased sympathetic component in the regulation of the cardiovascular system, which occurred in the body of the first-graders of the evaluated period. Identified changes in the functional state of an organism of first-graders can be interpreted as an adaptive response to the changing conditions of life of today's children.

For citation:
Pankova N. B., Karganov M. Y. Comparative analysis of indicators of the functional state in contemporary Moscow first-graders and their peers in 2002–2003. Novosibirsk State Pedagogical University Bulletin, 2017, vol. 7, no. 1, pp. 173–190. DOI: http://dx.doi.org/10.15293/2226-3365.1701.12
References: 
  1. Agajanyan N. A., Baevskiy R. M., Berseneva A. P. Problems of adaptation and learning about health. Moscow, RUDN University Publ., 2006, 284 p. (In Russian)
  2. Lyovushkin S. P. Dynamics of Physical Development of the Ulyanovsk region Schoolchildren. Physical culture: upbringing, education, training. 2005, no. 1, pp. 56–58. (In Russian)
  3. Pankova N. B., Romanov S. V., Arkhipova E. N., Afanaseva E. V., Nazarkina N. I. Physiological Correlates of the Results of Physical Development Testing in Fifth-Graders Moscovities. Journal of Health and Life Sciences. 2009, no. 3, pp. 61–67. (In Russian)
  4. Baranov A. A., Kuchma V. R., Skoblina N. A., Milushkina O. Ju., Bokareva N. A. The Main Mechanisms of Morphofunctional Development of Children and Adolescents in Modern Conditions. Annals of the Russian academy of medical sciences. 2012, no. 12, pp. 35–40. (In Russian)
  5. Klimov V. M., Aizman R. I. Assessment of physical health of schools graduates going to the universities. Bulletin of Siberian Medicine. 2016, vol. 15, no. 3, pp. 41–47. DOI: http://dx.doi.org/10.20538/1682-0363-2016-3-41-47 (In Russian)
  6. Pankona N. B., Lebedeva M. A., Kurneshova L. E., Pivovarov V. V., Karganov M. Yu. Spiroarteriocardiorythmography – a new method for investigation of cardio-vascular system state. Pathogenesis. 2003, vol. 1, no. 2, pp. 84–88. (In Russian)
  7. Pugovkin A. P., Verlov N. A., Yerkudov V. O., Landa S. B., Popov V. V., Priima N. F., Lebedeva M. A., Pankova N. B., Eygel M. Y. Non-invasive assessment of systemic hemodynamics study of peripheral vessels. Pathological Physiology and experimental Therapy. 2012, no. 4, pp. 75–79. (In Russian)
  8. Trukhanov A. I., Pankova N. B., Khlebnikova N. N., Karganov M. Yu. The use of spiroarteriocardiorhythmography as a functional test for estimating the state of the cardiorespiratory system in adults and children. Human Physiology. 2007, vol. 33, no. 5, pp. 585–594. (In Russian)
  9. Pankova N. B., Lebedeva M. A., Khlebnikova N. N., Karganov M. Yu. Relationship between latent periods of simple sensorimotor reaction to visual stimulus and body mass index in 7-8 years old children. Journal of Health and Life Sciences. 2015, no. 4, pp. 25–32. (In Russian)
  10. de Onis M., Onyango A. W., Borghi E., Siyam A., Nishida C., Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, vol.  85, no. 9, pp. 660–667.
  11. Ehlers K. C., Mylrea K. C., Waterson C. K., Calkins J. M. Cardiac output measurements. A review of current techniques and research. Ann. Biomed. Eng. 1986, vol. 14, no. 3, pp. 219–239.
  12. Geerts B. F., Aarts L. P., Jansen J. R. Methods in pharmacology: measurement of cardiac output. Br. J. Clin. Pharmacol. 2011, vol. 71, no. 3, pp. 316–330. DOI: http://dx.doi.org/10.1111/j.1365-2125.2010.03798.x
  13. Kubicek W. G., From A. H., Patterson R. P., Witsoe D. A., Castaneda A., Lillehei R. C., Ersek R. Impedance cardiography as a noninvasive means to monitor cardiac function. J. Assoc. Adv. Med. Instrum. 1970, vol. 4, no. 2, pp. 724–732.
  14. Headley J. M. Arterial pressure-based technologies: a new trend in cardiac output monitoring. Crit. Care Nurs. Clin. North. Am. 2006, vol. 18, no. 2, pp. 179–187. DOI: http://dx.doi.org/10.1016/j.ccell.2006.01.004
  15. Reisner A. T., Xu D., Ryan K. L., Convertino V. A., Rickards C. A., Mukkamala R. Monitoring non-invasive cardiac output and stroke volume during experimental human hypovolaemia and resuscitation. Br. J. Anaesth. 2011, vol. 106, no. 1, pp. 23–30. DOI: http://dx.doi.org/10.1093/bja/aeq295
  16. Kim T. H., Hur J., Kim S. J., Kim H. S., Choi B. W., Choe K. O., Yoon Y. W., Kwon H. M. Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: comparison with echocardiography. AJR Am. J. Roentgenol. 2005, vol. 185, no. 2, pp. 319–325. DOI: http://dx.doi.org/10.2214/ajr.185.2.01850319
  17. Kuo T. B., Lin T., Yang C. C., Li C. L., Chen C. F., Chou P. Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. 1999, vol. 277, no. 6, pt. 2, pp. H2233–H2239.
  18. Heart rate variability / Standards of measurement. Physiological interpretation and clinical use. Eur. HeartJournal. 1996, vol. 17, pp. 354–381.
  19. Pankova N. B. Functional development of vegetative regulation of the cardiovascular system in human ontogenesis. Ross. Fiziol. Zh. Im. I.M.Sechenova. 2008, vol. 94, no. 3, pp. 267–275. (In Russian)
  20. Heathers J. A. Everything Hertz: methodological issues in short-term frequency-domain HRV. Front. Physiol. 2014, vol. 5, no. 177. DOI: http://dx.doi.org/10.3389/fphys.2014.00177
  21. Perini R., Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol.2003, vol. 90, no. 3-4, pp. 317–325. DOI: http://dx.doi.org/10.1007/s00421-003-0953-9
  22. Ivanova T. S., Zakhar'eva N. N. Specifics of Cardiac Rate Indices of Athletes with Various Sports Performance. Theory and Practice of Physical Culture. 2013, no. 2, pp. 22–26. (In Russian)
  23. Shlyk N. I. Rapid assessment operational readiness of sportsmen for training and competitive activities (based on analysis of heart rate variability). Science and Sport: modern tendencies. 2015, vol. 9, no. 4, pp. 5–15. (In Russian)
  24. Bravi A., Longtin A., Seely A. J. Review and classification of variability analysis techniques with clinical applications. Biomed. Eng. Online. 2011, vol. 10, no. 90. DOI: http://dx.doi.org/10.1186/1475-925X-10-90
  25. Mainardi L. T., Bianchi A. M., Cerutti S. Time-frequency and time-varying analysis for assessing the dynamic responses of cardiovascular control. Crit. Rev. Biomed. Eng. 2002, vol. 30, no. 1-3, pp. 175–217.
  26. Perkiömäki J. S. Heart rate variability and non-linear dynamics in risk stratification. Front. Physiol.2011, vol. 2, no. 81. DOI: http://dx.doi.org/10.3389/fphys.2011.00081
  27. Francesco B., Maria Grazia B., Emanuele G., Valentina F., Sara C., Chiara F., Riccardo M., Francesco F. Linear and nonlinear heart rate variability indexes in clinical practice. Comput. Math. Methods Med. 2012, vol. 2012, Article ID 219080. DOI: http://dx.doi.org/10.1155/2012/219080
  28. Sassi R., Cerutti S., Lombardi F., Malik M., Huikuri H. V., Peng C. K., Schmidt G., Yamamoto Y. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015, vol. 17, no. 9, pp. 1341–1353. DOI: http://dx.doi.org/10.1093/europace/euv015
  29. Bond V. Jr., Curry B. H., Kumar K., Pemminati S., Gorantla V. R., Kadur K., Millis R. M. Nonlinear Conte-Zbilut-Federici (CZF) Method of Computing LF/HF Ratio: A More Reliable Index of Changes in Heart Rate Variability. J. Pharmacopuncture. 2016, vol. 19, no. 3, pp. 207–212. DOI: http://dx.doi.org/10.3831/KPI.2016.19.021
  30. Montano N., Porta A., Cogliati C., Costantino G., Tobaldini E., Casali K. R., Iellamo F. Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neurosci Biobehav Rev.2009, vol. 33, no. 2, pp. 71–80. DOI: http://dx.doi.org/10.1016/j.neubiorev.2008.07.006
  31. Togo F., Takahashi M. Heart rate variability in occupational health – a systematic review. Ind. Health. 2009, vol. 47, no. 6, pp. 589–602.
  32. Skibniewski F. W., Dziuda Ł., Baran P. M., Krej M. K., Guzowski S., Piotrowski M. A., Truszczyński O. E. Preliminary Results of the LF/HF Ratio as an Indicator for Estimating Difficulty Level of Flight Tasks. Aerosp. Med. Hum. Perform. 2015, vol. 86, no. 6, pp. 518–523. DOI: http://dx.doi.org/10.3357/AMHP.4087.2015
  33. Dimitriev D. A., Saperova E. V., Dimitriev A. D. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students. PLoS One. 2016, vol. 11, no. 1, e0146131. DOI: http://dx.doi.org/10.1371/journal.pone.0146131
  34. Mylnikova I. V., Efimova N. V. The informativeness of indices of the heart rate variability for the identification of the adverse effects of environmental factors on the health of adolescent girls. Hygiene and Sanitation. 2015, vol. 94, no. 1, pp. 121–124. (In Russian)
  35. Baevskiy R. M., Bersenev E. Yu., Orlov O. I., Ushakov I. B., Chernikova A.G. The problem of estimation of the organism adaptable opportunities under stressful influences. Ross. Fiziol. Zh. Im. I. M. Sechenova. 2012, vol. 98, no. 1, pp. 95–107. (In Russian)
  36. Aizman R. I., Aizman N. I., Lebedev A. V., Rubanovich V. B., Trofimovich E. M., Turbinsky V. V. Methodology and methods of population health monitoring using loading tests and computer technologies. Occupational Medicine and Human Ecology. 2015, no. 4, pp. 15–21. (In Russian)
  37. Klimov V. M., Rubanovich V. B., Aizman R. I. Morphological and functional characteristics and physical preparedness of the first year and second year female students of technical university engaged in aerobics. Novosibirsk State Pedagogical University Bulletin. 2016, no. 1, pp. 109–120. DOI: http://dx.doi.org/10.15293/2226-3365.1601.10 (In Russian)
  38. Pagani M., Lombardi F., Guzzetti S., Sandrone G., Rimoldi O., Malfatto G., Cerutti S., Malliani A. Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. J. Hypertens. Suppl. 1984, vol. 2, no. 3, pp. S383–S385.
  39. Billman G. E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol.2013, vol. 4, article 26. DOI: http://dx.doi.org/10.3389/fphys.2013.00026
  40. Elghozi J. L., Julien C. Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam. Clin. Pharmacol.2007, vol. 21, no. 4, pp. 337–347. DOI: http://dx.doi.org/10.1111/j.1472-8206.2007.00502.x
  41. Malpas S. C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev. 2010, vol. 90, no. 2, pp. 513–557. DOI: http://dx.doi.org/10.1152/physrev.00007.2009
  42. Zaza A., Lombardi F. Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc. Res. 2001, vol. 50, no. 3, pp. 434–442.
  43. Pankova N. B. Functional tests for the assessment of the healthy people state using heart rate variabilIty. Ross. Fiziol. Zh. Im I. M. Sechenova. 2013, vol. 99, no. 6, pp. 682–696. (In Russian)
  44. Reyes del Paso G. A., Langewitz W., Mulder L. J., van Roon A., Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013, vol. 50, no. 5, pp. 477–487. DOI: http://dx.doi.org/10.1111/psyp.12027
  45. Parati G. Arterial baroreflex control of heart rate: determining factors and methods to assess its spontaneous modulation. J. Physiol. 2005, vol. 565, no. 3, pp. 706–707. DOI: http://dx.doi.org/10.1113/jphysiol.2005.086827
  46. Rydlewska A., Ponikowska B., Borodulin-Nadzieja L., Banasiak W., Jankowska E. A., Ponikowski P. Assessment of the functioning of autonomic nervous system in the context of cardiorespiratory reflex control. Kardiol Pol.2010, vol. 68, no. 8, pp. 951–957. (In Polish)
Date of the publication 25.02.2017