Biochemical properties of ubiquinone function under experimental pathological conditions of cardiovascular system
The aim of this project was to study the state of mitochondrial electron-transport chain components, CoQ content and sensitivity of mitochondrial permeability transision pore in rat heart mitochondria under treatment with adrenaline, doxorubicin, and complexes of modulators and precursors of CoQ biosynthesis.
Subsequent application of complexes of precursors and modulators of ubiquinone biosynthesis under the adrenaline treatment decreases in sensitivity of mitochondrial permeability transition pore to inductors of its opening, improves activities of the mitochondrial electron-transport chain complexes I, II and IV. These complexes can act as effective anti-hypoxic remedies that promote normalization of the energy metabolism in heart. In the series of studies on rats treated with doxorubicin the administration of complexes of precursors and modulators of ubiquinone biosynthesis leads to significant decrease sensitivity of mitochondrial permeability transition pore to inductors of its opening and normalization of mitochondrial electron-transport chain function, which may lead to notable reduction of doxorubicin toxicity. The expiremental data obtained may become the basis of development of approaches to correction of adverse effects of doxorubicin by treatment with the complexes of precursors and modulators of its biosynthesis. These data may be used to substantiate the application of these biologically active substances within frameworks of complex treatment of cardiovascular pathologies.
ubiquinone, mitochondria, adrenaline, doxorubicin, mitochondrial permeability transition pore
1. Archer S. L. The mitochondrion as a Swiss army knife: implications for cardiovascular disease. J. Mol. Med. 2010. vol. 88(10). pp. 963–965.
2. Frohman M. A. Mitochondria as integrators of signal transduction and energy production in cardiac physiology and disease. J. Mol. Med. 2010. vol. 88(10). pp. 967–970.
3. Mazunin I. O. Modern concepts of the mitochondrial structure and functions. Genetics, 2010, vol. 46(9), pp. 1241–1243. (In Russian)
4. Rosca M. G., Hoppel C. L. Mitochondria in heart failure. Cardiovasc. Res., 2010, vol. 88 (1), pp. 40–50.
5. Mammucari C., Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 2010. vol. 131(7–8). pp. 536– 543.
6. Turunen M., Swiezewska E., Chojnacki T., Sindelar P., Dallner G. Regulatory aspects of coenzyme Q metabolism. Free Radical Research. 2002. vol. 36. pp. 437–443.
7. Inal M., Dokumacioglu A., Ozcelik E., Ucar O. The effects of ozone therapy and coenzyme Q(10) combination on oxidative stress markers in healthy subjects. Ir. J. Med. Sci. 2011. vol. 180 (3). pp. 703–707.
8. Sohal R. S., Forster M. J. Coenzyme Q, oxidative stress and aging. Mitochondrion. 2007. 7S. pp. S103 –S111.
9. Wang Y., Hekimi S. Molecular genetics of ubiquinone biosynthesis in animals. Crit. Rev. Biochem. Mol. Biol. 2013. vol. 48 (1). pp. 69–88.
10. Donchenko G. V, Kuchmenko O. B, Petukhov D. M. Biochemical properties and functional role of ubiquinone (CoQ). Aspects of practicaluse. Ukr. Biokhim. Zh. 2005. vol. 70(5). pp. 24–36.
11. Andreev S. V.The models of diseases. Moscow: Medicine Publ., 1973. pp. 198–223. (In Russian)
12. Kapel’ko V. I., Khatkevych A.N., Dvoryantsev S.N. Heart contractile function and energy metabolism during early stages of Adriamycin cardiomiopathy. Kardiologiia. 1997. vol. 2. pp. 31–35. (In Russian)
13. Muhammed H., Kupur C.K.R. Influence of ubiquinone on the inhibitory effect of adriamycin on mitochondrial oxidative phosphorylation. Biochem. J., 1984. vol. 217. pp. 493–498.
14. Patent 82639, Ukraine, А61К31/355 Complex preparation for improving the intracellularmetabolism. DonchenkoG.V., Kuz’menkoI.V., Kuchmenko O.B., Petukhov D. Moscow; zajav. 26.09.2006, publ. 25.04.2008. Bull. no. 8, 7 p.
15. Kosterin S.A., Bratkova N.F., Kurskiĭ M.D. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia (Mosc). 1985. vol. 50(8). pp. 1350–1361. (In Russian)
16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951. vol. 193 (1). pp. 265–275.
17. Donchenko G.V., Kovalenko V. N., Zabarnaia E.N. Effects of alpha-tocopherol derivatives on natural quinone levels in the tissues of vitamin E deficient rats. Biokhimiia (Mosc). 1979. vol. 44(5). pp. 923–930. (In Russian)
18. Hatefi Y., Rieske J.S.Preparation and properties of DPNH-coenzyme Q reductase (Complex I of the Respiratory Chain). Methods in Enzymology. 1967. vol. 10. pp. 235–239.
19. Ziegler D., Rieske J.S. Preparation and properties of succinate dehydrogenase-coenzyme Q reductase (complex II). Methods in Enzymology. 1967. vol. 10. pp. 231–235.
20. Gulidova G.P, Sorokina I.N. Various conditions fors pectrophotometric determination of succinatedehydrogenaseandcytochromeoxidaseactivityincerebralmitochondria. Biull. Eksp. Biol. Med. 1967. vol. 63(1). pp. 41–44. (In Russian)
21. Sagach V. F., Vavilova G. L., Strutinskaya N. A., Rudyk O.V. Aginginc reasesthesensitivity of mitochondrial permeability tran sitionporetoinductors of its openinginrats’ heart. Fiziol. Zh. 2004. vol. 50(2). pp. 49 – 63.
22. VasilenkoV. H., Fel’dman S. B., Khitrov N.I. Myocardiodystrophy. Moscow: Medicine Publ., 1989. (In Russian)
23. Luk'ianova L.D. Bioenergetic hypoxia: definition, mechanisms, and methods of correction. Biull. Eksp. Biol. Med. 1997. vol. 124(9). pp. 244–254. (In Russian)
24. Sugawara H., Yamamoto T., Shimizu S., Momose K. Inhibition of ubiquinone synthesis in isolated rat heart under an ischemic condition. Int. Biochem. 1990. vol. 25 (5). pp. 477–480.
25. Li T., Singal P.K. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation. 2000. vol. 102(17). pp. 2105–2110.
26. Vatutin M.T., Kalinkina N.V., KetingE.B. Anthracyclinecardiomyopathy. Donetsk: DonDIShI Publ., 2001. (In Russian)
27. Oliveira P.J., Santos M.S., Wallace K.B. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition andrespiration. Biochemistry (Mosc). 2006. vol. 71(2). pp. 247–253. (In Russian)